Line data Source code
1 : #include "tommath_private.h" 2 : #ifdef BN_MP_EXPTMOD_C 3 : /* LibTomMath, multiple-precision integer library -- Tom St Denis */ 4 : /* SPDX-License-Identifier: Unlicense */ 5 : 6 : /* this is a shell function that calls either the normal or Montgomery 7 : * exptmod functions. Originally the call to the montgomery code was 8 : * embedded in the normal function but that wasted alot of stack space 9 : * for nothing (since 99% of the time the Montgomery code would be called) 10 : */ 11 922 : mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y) 12 : { 13 32 : int dr; 14 : 15 : /* modulus P must be positive */ 16 922 : if (P->sign == MP_NEG) { 17 0 : return MP_VAL; 18 : } 19 : 20 : /* if exponent X is negative we have to recurse */ 21 922 : if (X->sign == MP_NEG) { 22 0 : mp_int tmpG, tmpX; 23 0 : mp_err err; 24 : 25 0 : if (!MP_HAS(MP_INVMOD)) { 26 : return MP_VAL; 27 : } 28 : 29 0 : if ((err = mp_init_multi(&tmpG, &tmpX, NULL)) != MP_OKAY) { 30 0 : return err; 31 : } 32 : 33 : /* first compute 1/G mod P */ 34 0 : if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { 35 0 : goto LBL_ERR; 36 : } 37 : 38 : /* now get |X| */ 39 0 : if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { 40 0 : goto LBL_ERR; 41 : } 42 : 43 : /* and now compute (1/G)**|X| instead of G**X [X < 0] */ 44 0 : err = mp_exptmod(&tmpG, &tmpX, P, Y); 45 0 : LBL_ERR: 46 0 : mp_clear_multi(&tmpG, &tmpX, NULL); 47 0 : return err; 48 : } 49 : 50 : /* modified diminished radix reduction */ 51 922 : if (MP_HAS(MP_REDUCE_IS_2K_L) && MP_HAS(MP_REDUCE_2K_L) && MP_HAS(S_MP_EXPTMOD) && 52 922 : (mp_reduce_is_2k_l(P) == MP_YES)) { 53 0 : return s_mp_exptmod(G, X, P, Y, 1); 54 : } 55 : 56 : /* is it a DR modulus? default to no */ 57 922 : dr = (MP_HAS(MP_DR_IS_MODULUS) && (mp_dr_is_modulus(P) == MP_YES)) ? 1 : 0; 58 : 59 : /* if not, is it a unrestricted DR modulus? */ 60 922 : if (MP_HAS(MP_REDUCE_IS_2K) && (dr == 0)) { 61 922 : dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0; 62 : } 63 : 64 : /* if the modulus is odd or dr != 0 use the montgomery method */ 65 922 : if (MP_HAS(S_MP_EXPTMOD_FAST) && (MP_IS_ODD(P) || (dr != 0))) { 66 922 : return s_mp_exptmod_fast(G, X, P, Y, dr); 67 0 : } else if (MP_HAS(S_MP_EXPTMOD)) { 68 : /* otherwise use the generic Barrett reduction technique */ 69 0 : return s_mp_exptmod(G, X, P, Y, 0); 70 : } else { 71 : /* no exptmod for evens */ 72 : return MP_VAL; 73 : } 74 : } 75 : 76 : #endif